Force generation by cytoskeletal motor proteins as a regulator of axonal elongation and retraction.
نویسندگان
چکیده
Axons elongate and retract in response to environmental signals during the development of the nervous system. There is broad agreement that these signals must affect the cytoskeleton to elicit bouts of elongation or retraction. Most contemporary studies have speculated that bouts of elongation involve polymerization of the cytoskeleton whereas bouts of retraction involve depolymerization of the cytoskeleton. Here we present an alternative view, namely that molecular motor proteins generate forces on the cytoskeletal polymers that can affect their distribution and configuration. In this view, bouts of axonal elongation involve net forward movement of cytoskeletal elements whereas bouts of retraction involve net backward movements. We propose that environmental cues elicit bouts of elongation or retraction via biochemical pathways that modulate the activities of relevant motors.
منابع مشابه
Cytoplasmic dynein pushes the cytoskeletal meshwork forward during axonal elongation.
During development, neurons send out axonal processes that can reach lengths hundreds of times longer than the diameter of their cell bodies. Recent studies indicate that en masse microtubule translocation is a significant mechanism underlying axonal elongation, but how cellular forces drive this process is unknown. Cytoplasmic dynein generates forces on microtubules in axons to power their mov...
متن کاملThe Cytomechanics of Axonal Elongation and Retraction
Neurites of PC12 and chick dorsal root ganglion neurons behave as viscoelastic solids in response to applied forces. This passive behavior can be modeled with three mechanical elements; a relatively stiff, undamped spring in series with a Voight element composed of a less stiff spring in parallel with a dashpot. In response to applied tensions >100 microdynes, PC12 cells show lengthening behavi...
متن کاملType-IV Pilus Deformation Can Explain Retraction Behavior
Polymeric filament like type IV Pilus (TFP) can transfer forces in excess of 100 pN during their retraction before stalling, powering surface translocation(twitching). Single TFP level experiments have shown remarkable nonlinearity in the retraction behavior influenced by the external load as well as levels of PilT molecular motor protein. This includes reversal of motion near stall forces when...
متن کاملSphingosine-1-Phosphate and the S1P3 Receptor Initiate Neuronal Retraction via RhoA/ROCK Associated with CRMP2 Phosphorylation
The bioactive lipid sphingosine-1-phosphate (S1P) is an important regulator in the nervous system. Here, we explored the role of S1P and its receptors in vitro and in preclinical models of peripheral nerve regeneration. Adult sensory neurons and motor neuron-like cells were exposed to S1P in an in vitro assay, and virtually all neurons responded with a rapid retraction of neurites and growth co...
متن کاملMicrotubule reconfiguration during axonal retraction induced by nitric oxide.
Axonal retraction is induced by different types of physiological cues and is responsible for the elimination of mistargeted axons. There is broad agreement that alterations in the cytoskeleton underlie axonal retraction. The prevailing view is that axonal retraction involves a wholesale depolymerization of microtubules and microfilaments. However, axons retracting physiologically display a very...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trends in cell biology
دوره 11 6 شماره
صفحات -
تاریخ انتشار 2001